ودربرن، جوزف (۱۸۸۲ـ ۱۹۴۸)

از ویکیجو | دانشنامه آزاد پارسی
نسخهٔ تاریخ ‏۲۴ ژوئیهٔ ۲۰۱۹، ساعت ۰۵:۲۳ توسط Nazanin (بحث | مشارکت‌ها)
(تفاوت) → نسخهٔ قدیمی‌تر | نمایش نسخهٔ فعلی (تفاوت) | نسخهٔ جدیدتر ← (تفاوت)

وِدِرْبِرْن، جوزِف (۱۸۸۲ـ ۱۹۴۸)(Wedderburn, Joseph)

وِدِرْبِرْن، جوزِف
جوزف ودربرن
Joseph Wedderburn
زادروز فورفر ۱۸۸۲م
درگذشت ۱۹۴۸م
ملیت اسکاتلندی
تحصیلات و محل تحصیل  ادینبورگ و شیکاگوی امریکا
شغل و تخصص اصلی ریاضی دان
آثار قضیه ای درباره جبر متناهی (۱۹۰۵)
گروه مقاله ریاضیات

ریاضی‌دان اسکاتلندی. افق‌های جدیدی را در تفکر راجع به موضوع میدان‌ها‌ (هیئت‌ها)ی جبری[۱] گشود و کارهایش تأثیر عمیقی بر پیشرفت‌های جبر جدید داشت. در فورفر[۲] زاده شد. در ادینبورگ[۳] و شیکاگوی امریکا درس خواند. از ۱۹۰۹ تا ۱۹۴۵، به تدریس در دانشگاه پرینستون[۴] مشغول بود، ولی طی جنگ‌ جهانی اول، سرباز ارتش بریتانیا بود و در فرانسه خدمت می‌کرد. نخستین مقاله‌اش، با عنوان قضیه‌ای دربارۀ جبر متناهی[۵] (۱۹۰۵)، نقطۀ عطفی در تاریخ جبر بود. او با معرفی روش‌های جدید نشان داد که شناخت کامل ساختار جبرهای نیم‌ساده با استفاده از اعداد اَبَرمختلط و نیز اعداد حقیقی یا مختلط امکان‌پذیر است. سپس، دو قضیه استنتاج کرد که نام او را بر خود دارند. نخستین قضیه در مقاله‌ای از او با عنوان «دربارۀ اعداد ابرمختلط[۶]» (۱۹۰۷) آمده است. او در این مقاله نشان داد که جبر ساده مرکب از ماتریس‌ها[۷]یی از یک مرتبۀ مفروض و دارای عناصری است که از تقسیم[۸] جبر گرفته شده‌اند. بنا به قضیۀ اول ودِربرن، اگر جبر یک جبر تقسیمی متناهی باشد، یعنی فقط تعدادی متناهی عضو داشته باشد و همواره تقسیم بر یک عضو ناصفر در آن امکان‌پذیر باشد، آن‌گاه قانون ضرب[۹] باید تعویض‌پذیر[۱۰] (جابه‌جایی‌پذیر) باشد، پس جبر مورد نظر درواقع میدانی متناهی است. بنا به قضیۀ دوم وِدِربرن، جبر مرکزی ـ ساده با جبرِ همۀ جبرهای n × n یک‌ریخت[۱۱] است. او با بررسی میدان‌های چاولۀ[۱۲] دارای تعدادی عضو متناهی به این قضیه رسید. کشف او در این زمینه که هر میدانی با تعداد متناهی عضو تحت ضرب تعویض‌پذیر (جابه‌جایی‌پذیر) است، به رده‌بندی کامل همۀ جبرهای نیم‌سادۀ دارای تعداد متناهی عضو انجامید.

 


  1. algebraic fields
  2. Forfar
  3. Edinburgh
  4. Princeton
  5. Theorem on Finite Algebra
  6. On Hyper-Complex Numbers
  7. matrices
  8. division
  9. multiplication law
  10. commutative
  11. isomorphic
  12. skew fields